febrero 16, 2021

¿Qué son los virus y cómo funcionan?

Los virus son pequeños pedazos de ARN (ácido ribonucleico) o ADN (ácido desoxirribonucleico), muchos están encapsulados en una envoltura hecha a base de proteínas conocida como cápside, otros protegen su material genético con una membrana o envoltura derivada de la célula a la que infectan y algunos otros además rodean su cápside con una membrana celular.

Los virus han evolucionado para reproducirse dentro de la célula que infectan,  ya que por si solos no son capaces de hacerlo porque carecen de la maquinaria molecular necesaria. Entonces, hay tres problemas que un virus debe resolver para poder hacer más copias de él mismo: 1) ¿cómo reproducirse dentro de la célula que infecta? 2) ¿cómo esparcirse de un hospedero a otro? y 3) ¿cómo evitar ser eliminado por las defensas (sistema inmunológico) del hospedero?

De manera general los virus de ADN utilizan partes de la información del hospedero, así como también parte de su maquinaria celular. El problema con esta estrategia es que la mayor parte de las células maduras del hospedero no están replicándose activamente, se encuentran reposando para ahorrar energía. Por lo tanto, los virus de ADN necesitan encontrar la manera de activar el motor (“pasarle corriente”) de la célula hospedera o, alternativamente, traer consigo los aditamentos de aquellas partes celulares que no están activas cuando el virus entra. Básicamente lo que los virus hacen para reproducirse es secuestrar la fábrica de la célula para producir virus en lugar de nuevas células. Por otro lado, los virus de RNA traen consigo sus propias máquinas de copiado de información genética (ej. enzima RNA-polimerasa) o poseen genes (información genética) que producen las proteínas que se requieren para ensamblar las máquinas de copiado dentro de la célula que infectan, lo que los hace independientes de la maquinaria celular y capaces de infectar células que no están activamente reproduciéndose.

La forma en que los diferentes tipos de virus se esparcen es muy variada: por vía aérea cuando respiramos, cuando los ingerimos con los alimentos, los que obtenemos directamente de nuestras madres, los que obtenemos por contacto sexual y los que se trasmiten por picaduras de insectos como los mosquitos. La piel representa una barrera impenetrable para un virus porque esta conformada por capas de células muertas, y los virus necesitan células vivas para poder reproducirse. Por lo tanto, a menos que la piel se rompa (ej. heridas) o sea picada (ej. mosquitos), los virus han elegido tomar otras rutas de entrada al hospedero. Por ejemplo, atacando la barrera de mucosa celular que recubre al sistema respiratorio y reproductivo. Aún así, la barrera de mucosa es altamente efectiva y ayuda a eliminar a la mayoría de los virus que quedan atrapados en ella. La mucosa es ayudada por macrófagos (células de defensa) que ingieren a los virus y los eliminan. En el caso de la vagina, además de la mucosa, las bacterias que colonizan el tracto reproductivo producen ácido, el cual hace que el medio sea poco propicio porque muchos virus son sensibles a las condiciones ácidas. Y por si fuera poco, aquellos virus que deciden entrar por el aparato digestivo deben lidiar con defensas muy agresivas, tal es el caso de la saliva que contiene compuestos potentes que desactivan a los virus. Además, si logran pasar la saliva, los espera un baño de ácidos estomacales aderezados con enzimas digestivas (diseñadas para desbaratar proteínas, carbohidratos y lípidos) y sales biliares (detergente para desintegrar las grasas ingeridas) que son muy efectivos en desintegrar las envolturas que protegen el material genético de los virus.

Finalmente, una vez que los virus logran pasar las barreras físicas impuestas por la piel, éstos se enfrentan al sistema inmunológico innato y adaptativo. El sistema innato se llama así porque es un sistema de defensa que todos los animales parecen tener. Esta constituido por cuatro armas: 1) los fagocitos, que son células blancas (ej. macrófagos) que patrullan los tejidos del cuerpo limpiándolo de basura, restos celulares e invasores. 2) El sistema complementario, el cuál esta conformado por aproximadamente veinte proteínas producidas en el hígado y que se encuentran en altas concentraciones en la sangre y los tejidos, éstas trabajan en conjunto para destruir a los invasores (hacen perforaciones en la envoltura proteínica o membrana celular de los invasores) y para dar la señal de alarma a otros miembro del equipo del sistema inmune. Este sistema es muy antiguo, incluso los erizos de mar que evolucionaron hace aproximadamente 700 millones de años lo tienen. 3) El sistema de alerta de interferones, que son proteínas producidas por las células que se unen a pequeños receptores (llaves) de la membrana celular y que sirven para alertar a la célula de que pronto será atacada por virus, en cuyo caso la célula infectada cometerá suicidio! Y 4) las células naturales asesinas, este tipo de células se encargan de destruir a todas las células que han sido infectadas por algún virus; el misterio es ¿cómo lo hacen? Al parecer hay señales a nivel molecular, como los interferones, que les indican algo como “mátame porque estoy infectas”, pero también hay señales que dicen “no me mates estoy sana”, los detalles todavía están siendo descubiertos.

Por lo rgular el sistema inmune innato es suficientemente bueno controlando las infecciones, pero hay ocasiones en la que este sistema no se da abasto, principalmente cuando la cantidad de virus producidos durante las fases iniciales de la infección es muy alta. Es en este momento cuando el sistema inmune adaptativo entra en acción. Este sistema esta constituido por dos armas: anticuerpos y células asesinas T (conocidas también como CTL por sus siglas en inglés): 1) los anticuerpos (pequeñas etiquetas moleculares) son producidos en células especiales conocidas como células B. Dichas células poseen una diversidad enorme de pequeñas etiquetas sobre su superficie (membrana celular), las cuales se utilizan para reconocer a cualquier molécula orgánica que pueda existir, como los patógenos. Cuando las células B encuentran a un invasor (ej. virus), se produce una reacción en cadena que hace que se generen muchas células B que van a producir únicamente las etiquetas (anticuerpos) específicas que fueron seleccionadas por el invasor. De esta manera los anticuerpos o etiquetas se adhieren a la superficie del invasor o de las células infectadas y envían un mensaje de alerta (algunas etiquetas ayudan a prevenir que los virus infecten células sanas bloqueando los accesos de entrada a las células); estos mensajes serían algo como: “Oigan, soy una célula que está infectada, por favor destrúyanme” o “Aquí hay un virus, hay que destruirlo”. Finalmente, algunas células B se convierten en células de memoria del sistema inmune; es decir, son las células que nos protegerán en caso de que el mismo invasor llegue de nuevo al cuerpo. 2) Las células asesinas T o CTL son células blancas que, al igual que las células B, poseen una gran variedad de etiquetas en su superficie que son utilizadas para analizar los fragmentos de proteínas que las células del cuerpo exponen sobre su superficie. Como los virus utilizan la maquinaria de la célula infectada para producir proteínas virales, fragmentos de éstas son llevados a la superficie celular y expuestas al exterior por moléculas (mostradores) especiales; una vez ahí, estas son evaluadas por las células CTL y en caso de detectar una infección, las células asesinas T destruirán a la célula que ha sido infectada.

La manera en que los virus evaden estas defensas del hospedero son muy variadas, algunas de ellas son: 1) producción de proteínas que interfieren o inhabilitan las señales moleculares de alerta de la célula (ej. bloquean el sistema de producción de interferón), y que pueden evitar que las moléculas involucradas en la activación de la programación de muerte celular entren en funcionamiento; permitiendo así, que la célula viva lo suficiente hasta que el virus haya producido un número grande de nuevos virus que infectarán a más células. 2) El sistema inmune adaptativo (células B) tiene memoria para los tipos de cepas virales a los que ya ha sido expuesto el individuo, pero las altas tasas de mutación hacen que el virus cambie rápidamente por lo que el sistema inmune adaptativo ya no la reconoce y escapa (este método se conoce como “carnada y cambio”). 3) Algunos virus con diferente origen (ej. influenza humana e influenza aviar) pueden hacer mezclas de su material genético cuando infectan a un mismo individuo de la misma u otra especie (ej. cerdo), esto hace que el sistema inmune no tenga memoria en contra de está nueva variante! 4) Utilizar disfraces para esconderse del sistema de defensa celular; por ejemplo, hay un grupo de virus conocido como rotavirus, los cuáles tienen una triple capa proteínica protegiendo su material genético, de las cuales únicamente la más exterior se elimina por enzimas del sistema digestivo, pero el material genético se mantiene escondido del sistema inmune dentro de las otras dos envolturas. 5) Esconderse del sistema de defensa tomando rutas alternativas de infección; por ejemplo, el virus de la hepatitis A entra por la vía oral, pero después toma un atajo para llegar al hígado que es donde se reproduce en grandes cantidades. Como el sistema de defensa en contra de invasores intestinales es diferente al que defiende órganos internos y la sangre, entonces le toma un tiempo al sistema de defensa darse cuenta de que ha sido engañado, y es ese tiempo el que le virus utiliza para reproducirse! 6) Fusión de varias células del hospedero (formando aglutinaciones conocidas como células gigantes) para transmitirse directamente entre ellas sin exponerse al sistema de defensa. 7) Destrucción de células de defensa que regulan la coordinación (el coach y el capitán del equipo) de la respuesta inmunológica del hospedero, provocando que no se genere la respuesta adecuada de defensa. 8) Utilizando señuelos para distraer al sistema de defensa; por ejemplo, el virus de hepatitis B produce muchas envolturas virales sin material genético (cajas vacías!), entonces el sistema de defensa reconoce dichas envolturas por las etiquetas que hay en su superficie, pero no puede distinguir entre las que traen material genético y las que no, así que muchos virus escapan!

Asumiendo que los virus han evadido todas las defensas, éstos tiene dos estrategias generales para ingresar al interior de la célula que van a infectar: 1) las proteínas sobre la superficie de la envoltura del virus se unen a receptores moleculares de la membrana celular, una vez hecho eso se abre una puerta por la que se inyecta el material genético viral en el citoplasma de la célula; y 2) las proteínas de la envoltura del virus se unen a los receptores moleculares de la membrana celular, y entonces el virus completo es encapsulado en contenedores especiales hechos de membrana celular, los cuales son llevados al interior de la célula. Una vez ahí la envoltura proteínica del virus y la membrana del contenedor se fusionan y el material genético del virus es liberado, éste utiliza señales moleculares para dirigirse al núcleo de la célula y poder utilizar la maquinaria celular para hacer más copias de él mismo.

 

Fuente: https://www.inecol.mx/

Copyright ©2021 Instituto de Capacitación para el Trabajo del Estado de Chihuahuadiseño por Hive Studio
Aviso de Privacidad
crossmenuchevron-down
linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram